7 research outputs found

    Linking gait mechanics with perceived quality of life and participation after stroke

    Get PDF
    BACKGROUND: Individuals with hemiparesis following stroke often experience a decline in the paretic limb's anteriorly directed ground reaction force during walking (i.e., limb propulsive force). Gait speed and walking capacity have been independently associated with paretic limb propulsion, quality of life, and participation in people with stroke. However, it is unclear as to the extent that underlying limb mechanics (i.e., propulsion) play in influencing perceptions of quality of life and participation. We therefore sought to determine the role of limb propulsion during gait on the perception of quality of life and participation in people following stroke. METHODS: This study is a secondary analysis of individuals involved in a gait retraining randomized control trial. Gait speed, walking capacity, limb propulsion, Stroke Impact Scale, and average daily step counts were assessed prior to and following 6 weeks of training. The pre-training data from 40 individuals were analyzed cross-sectionally using Pearson and Spearman correlations, to evaluate the potential relationship between limb propulsion (ratio of paretic limb propulsion to total propulsion) with gait speed, gait capacity, perceived quality of life domains, and average daily step counts. Partial correlations were used to control for gait speed. Thirty-one individuals were assessed longitudinally for the same relationships. RESULTS: We observed a training effect for gait speed, walking capacity, and some quality of life measures. However, after controlling for gait speed, we observed no significant (p≤0.05) correlations in the cross-sectional and longitudinal analyses. SIGNIFICANCE: After controlling for the influence of gait speed, paretic limb propulsion is not directly related to perceived quality of life or participation. Although limb propulsion may not have a direct effect on participant's perceived quality of life, it appears to be an important factor to enhance gait performance, and therefore may be important to target in rehabilitation, when feasible

    These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits

    Get PDF
    Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.R01 AG067394 - NIA NIH HHS; R01 HD095975 - NICHD NIH HHS; K01 HD079584 - NICHD NIH HHSPublished versio

    Aerobic exercise and action observation priming modulate functional connectivity

    Get PDF
    Aerobic exercise and action observation are two clinic-ready modes of neural priming that have the potential to enhance subsequent motor learning. Prior work using transcranial magnetic stimulation to assess priming effects have shown changes in corticospinal excitability involving intra- and interhemispheric circuitry. The objective of this study was to determine outcomes exclusive to priming- how aerobic exercise and action observation priming influence functional connectivity within a sensorimotor neural network using electroencephalography. We hypothesized that both action observation and aerobic exercise priming would alter resting-state coherence measures between dominant primary motor cortex and motor-related areas in alpha (7-12 Hz) and beta (13-30 Hz) frequency bands with effects most apparent in the high beta (20-30 Hz) band. Nine unimpaired individuals (24.8 ± 3 years) completed a repeated-measures cross-over study where they received a single five-minute bout of action observation or moderate-intensity aerobic exercise priming in random order with a one-week washout period. Serial resting-state electroencephalography recordings acquired from 0 to 30 minutes following aerobic and action observation priming revealed increased alpha and beta coherence between leads overlying dominant primary motor cortex and supplementary motor area relative to pre- and immediate post-priming timepoints. Aerobic exercise priming also resulted in enhanced high beta coherence between leads overlying dominant primary motor and parietal cortices. These findings indicate that a brief bout of aerobic- or action observation-based priming modulates functional connectivity with effects most pronounced with aerobic priming. The gradual increases in coherence observed over a 10 to 30-minute post-priming window may guide the pairing of aerobic- or action observation-based priming with subsequent training to optimize learning-related outcomes

    Different types of additional somatosensory information do not promote immediate benefits on gait in patients with Parkinson's disease and older adults

    No full text
    AbstractPlantar cutaneous stimulation has been shown to improve gait in Parkinson's disease (PD), but the effects of different types of insoles have not been tested. We evaluated the immediate effect of different types of insoles on gait in PD patients and healthy older adults. Nineteen PD patients and nineteen healthy older adults performed and performed a walking task at their self-selected speed in three conditions: conventional insole, insole with a raised ridge around the foot perimeter, and insole with half-spheres. Plantar sensation was evaluated before and after the walking protocol. There were no differences between groups for plantar sensation before and after the walking task. PD patients demonstrated reduced stride length and stride velocity. There were no immediate benefits offered by the insoles on gait of either group. The increased plantar cutaneous stimulation does not promote immediate benefits on gait in PD patients and healthy older adults
    corecore